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Abstract 
 
This study examines the performance of four constitutive models according to capacity in predicting metal fatigue life under propor-

tional and non-proportional loading conditions. These cyclic plasticity models are the multi-surface models of Mroz and Garud, and the 
non-linear kinematic hardening models of Armstrong-Frederick and Chaboche. The range of abilities of these models is studied in detail. 
Furthermore, the plastic strain energy under multiaxial fatigue condition is calculated in the cyclic plasticity models by the stress-strain 
hysteresis loops. Using the results of these models, the fatigue lives that have set in the energy-based fatigue model are predicted and 
evaluated with the reported experimental data of 1% Cr-Mo-V steel in the literature. Consequently, the optimum model in the loading 
condition for this metal is chosen based on life factor. 
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1. Introduction 

The study of multiaxial fatigue damage requires a thorough 
understanding of plasticity. Fatigue-crack initiation as con-
trolled by local plasticity is a well-accepted phenomenon. 
Fatigue failure of mechanical components is a process com-
prising cyclic stress/strain evolutions and redistributions in the 
critical stressed volume. Due to stress concentration (notches, 
material defects, or surface roughness), the local material 
yields and redistributes the loading to the surrounding material, 
then follows it with cyclic plastic deformation. Finally, a crack 
is initiated leading to the loss of the resistance. Therefore, 
simulations for cyclic stress-strain evolution and redistribution 
are critical for predicting fatigue failure of mechanical com-
ponents. Diverse criteria such as stress, strain, energy, and 
critical plane criterion have been utilized to estimate fatigue 
life of metals [1-6]. The earliest fatigue life prediction ap-
proach used the stress range as fatigue parameter for life cor-
relations [7], and its models are suitable for high cycle fatigue. 
Soon after, the strain range was recognized as fatigue parame-
ter for life prediction [8]. 

The parameters are typically associated with low cyclic fa-
tigue. More recently, the energy parameter [9] that considers 
both stress range and strain range has been developed for life 

predictions, in reaction to the differences between stress re-
sponse and strain response in plastic deformations. In this 
paper, energy-based criteria of multiaxial fatigue are utilized. 
Morrow [10] and Halford [11] performed detailed investiga-
tions of the hysteresis loop shape and stable plastic work per 
cycle during fatigue. The proposed relation between plastic 
strain energy and fatigue life has been developed in terms of 
the fatigue properties. These properties are determined using 
the Coffin-Manson equation. This equation is the summation 
of two separate curves for elastic and plastic strain amplitude-
life. When plotted on log-log scales, both curves become 
straight lines. Garud [12] suggested applying the uniaxial hys-
teresis loop energy concepts of Morrow to multiaxial fatigue. 
The model of Jahed and Varvani-Farahani [13] expresses the 
total energy consisting of two parts, plastic and elastic strain 
energies, where the plastic strain is related to the hysteresis 
loop loading shape. 

A variety of plasticity models has been introduced to esti-
mate the material cyclic deformation [14-17]. Prager [18] in 
1956 was the first to introduce kinematic hardening. The plas-
tic modulus calculation in the model is coupled with its kine-
matic hardening rule through the yield surface compatibility 
condition. The Armstrong-Frederick [19] and Chaboche [20-
22] non-linear kinematic hardening models belong to this 
group. In other plasticity models, such as the Mroz [23, 24] 
and Garud [25] multi-surface models, the plastic modulus 
computation is not coupled to the kinematic hardening rule.  

In this study, two multi-surface and two non-linear kinemat-
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ic hardening models of cyclic plasticity for fatigue life predic-
tion of metals are analyzed and simulated in proportional and 
non-proportional loadings. The life prediction is performed by 
a plastic strain energy model, and the plasticity models are 
examined using their life factors.  
 

2. Cyclic plasticity 

The correlation of cyclic plasticity with fatigue, fracture, 
and deformation cases of industrial pieces has been focused on 
by many researchers [26, 27]. 

The three basic assumptions of an incremental plasticity 
model are as follows: 

1. Yield condition 
2. Flow rule 
3. Consistency condition 
The yield surface for boundary recognition between elastic 

and elastic-plastic regions in the multiaxial loadings is utilized, 
where the stress point is always on the yield surface boundary. 
Based on flow or normality rule, the plastic increment is al-
ways normal to the yield surface. The consistency condition 
shows that by reversing the load direction during any plastic 
loading, the behavior of the metal is always elastic. During 
plastic loading, the yield surface boundary follows the stress 
in the stress space. The consistency condition is the root of the 
hardening rules. There are general viewpoints for yield surface 
based on the hardening rules. The most important use of ki-
nematic hardening is determined when the inverse loading 
subjects are present. Isotropic hardening is able to handle any 
proportional and non-proportional loading. However, this 
hardening rule is unable to simulate the stress-strain hysteresis 
loop in cyclic loadings. Therefore, for simulation process, the 
kinematic hardening will be used in this study. 

 
2.1 Stress-Strain relation in kinematic hardening in the mul-

tiaxial case 

Based on the Prager rule for satisfying the consistency con-
dition, yield stress moves without any expansion to follow the 
stress point in the stress space. In the Prager plasticity model, 
the movement of the yield surface is parallel to the plastic 
increment: 
 

p
ij ijda cdε=   (1) 

 
In other words, the movement of the yield surface is in   

the direction of the instantaneous normal vector, as shown in 
Fig. 1. 

The stress-strain relations for the kinematic hardening rule 
are formulated by combining the following: 

Yield condition is  
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The normal unit vector for kinematic hardening is defined 

as 
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Using Eq. (5), the flow rule, hardening rule, and stress-

strain relation will be defined as 
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where ijS  and ijdS  are the stress tensor and its increment, 
respectively; ija  and ijda  are the centers of the moveable 
yield surface or back stress and its increment; and pK is the 
multiaxial representation of the plastic tangent modulus. 

 
2.2 Multi-surface models 

2.2.1 Mroz model 
For better approximation of the stress-strain curve and ge-

neralization of the plastic modulus in multiaxial case, Mroz 
[24] defined a field of different plastic modulus in the stress 
space. 

During plastic loading, these stress surfaces are activated 
subsequently and move until the stress point meets the next 
stress inactive stress surface. When the stress point meets a 
stress surface, this surface is active. By increasing the load, the 
active surface and the entire, previously activated surface (in-
ner surfaces) move together until unloading occurs. To find 
the direction of the movement for active stress surfaces, the 
steps in the non-proportional loading are as follows: 
1. Find a similar point on the next surface that has the same 

normal vector as the current normal vector: 
* 11 ( ) kk
ij ij ij ij

k

R
S S a a

R
++= − +   (7)  

 
2. Determine the direction of the center of active surface:  

*( )k
ij ij ijda d S Sη= −   (8)  

 
3. Other inner surfaces 1 1k k< < −  need to be in touch with 

the active surface during plastic loading.  
 

 
 
Fig. 1. Prager rule. 
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In this situation, the back stress of the other internal surfaces 
is as follows:  
 

2
3

r
ij ij r ija S R n= − ,1 1r k< < −   (9)  

 
where *

ijS  is a point of the next stress surface that has the same 
normal vector as the present stress surface. The scalar value of 
dµ  is computable from the consistency relation. 

 
2.2.2 Garud model 

Movement of the surface in the Garud model is dependent 
on the stress direction. The following steps are needed to de-
termine the movement direction of the yield surface based on 
the Garud model: 
1. Find the normal vector on the next surface: 

1

1

3
2

B k
ij ijB

ij
k

S a
n

R

+

+

−
=   (10)  

 
2. Find the stress point on the next inactive surface B

ijS  by 
extending the current stress increment. Here, *

ijS  is a simi-
lar point on the active surface. These have the same normal 
vectors as 

* *2
3

k
ij k ij ijS R n a= +   (11)  

 
3. Determine the direction of the center of active  

surface: *( )k B
ij ij ijda d S Sη= −   (12) 

 
Other inner surfaces such as 1 1k k< < −  will be in touch 

with the active surface during plastic loading, similar to the 
situation of the Mroz model. 

 
2.3 Non-linear kinematic hardening model 

2.3.1 Armstrong–frederick model  
Armstrong and Frederick [19] added non-linear parameter 

to the Prager model for better estimation of the stress-strain 
curve in uniaxial and multiaxial loadings. The kinematic har-
dening rule for the yield surface utilized in this model has 
been added to the first term by 
 

p p
ij ij ij eda cd a dε γ ε= −   (13) 

 
where, c and γ  are material constants obtained from cyclic 
stress-strain curve, and p

edε  is the equivalent plastic incre-
ment. One of the evident properties of this model is coupled to 
the plastic modulus of the hardening functions. The equation 
in the uniaxial loading condition is transformed into a relation 
between moving yield surface and plastic strain. The equation 
yields an increasing curve; however, the gradient of this curve 
is decreased by the increasing stress and the equation value 
tends to become the constants /c γ .The plastic modulus in 
the hardening rule is found by multiplying ijn  in Eq. (13) 
with the following flow rule and consistency condition: 

 

p ij ijK c a nγ= − .  (14) 
 
2.3.2 Chaboche model 

Instead of one term, Chaboche [20] used several terms simi-
larly used in the initial model of Armstrong-Frederick for 
determining the yield surface center variations. 
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Although the Chaboche model was presented with three 

terms (m=3) the number of these terms has been increased. 
 

3. Procedure of fatigue life prediction 

A computer program is developed to simulate stress-strain 
response numerically in order to calculate strain energy based 
on the back stress values in the plasticity model. The elastic-
plastic stiffness tensor is used in the computer program for 
incremental loading. Using increments of strain, the stress 
increments and plastic strains are calculated for different val-
ues of strain increment. The plastic work per cycle under non- 
proportional loading is calculated by integrating both axial and 
torsional hysteresis loops. The values of fatigue life in differ-
ent loading conditions are predicted using the plastic part of 
the energy-based proposed method of Jahed and Varvani-
Farahani [13]: 
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AN and TN  are calculated by utilizing the fatigue coeffi-
cient obtained from the energy-fatigue life curve. Plastic strain 
energy values are determined from the last step. The fatigue 
lives in the plasticity models are calculated with the help of 
the following equation from the energy method: 
 

A T
f A T

W WN N N
W W

∆ ∆= +
∆ ∆

.  (17) 

 

4. Evaluation of the plasticity models  

In this study, the results of the fatigue life prediction of the 
plasticity models of Mroz and Garud (multi-surface models) 
and Armstrong-Frederick and Chaboche (non-linear models) 
are compared with the experimental results of Brown and 
Miler  [28, 29] on 1% Cr-Mo-V steel. The data include pro-
portional and non-proportional tension-torsion tests with sev-
eral loading paths and strain ratios. The energy-based fatigue 
coefficients are shown in Table I. 

 
4.1 Mroz model 

Predicted fatigue lives obtained by this model are plotted 
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versus the experimental life in Fig. 2. Some results are close to 
a factor of 3. The correlation of fatigue life values of predicted 
and experimental lives is satisfactory for proportional and 
non- proportional loadings. 

 
4.2 Garud model 

Fig. 3 shows that the prediction of this plasticity model is 
very close to the value of the Mroz model. The effect on the 
results is observably distinct. Nevertheless, the results of the 
Garud model are numerically closer to the experimental re-
sults than to any other model.  
 
4.3 Armstrong-frederick model 

From the cyclic stress-strain curve of material constants, 
,c γ  are determined to be 33322.2 and 194.5, respectively. 

The predicted life obtained by using the present parameter is 
compared to the experimental life data in Fig. 4 and the max-
imum life factor of 3.1.  

4.4 Chaboche model 

In this model, the number of back stress from approxima-
tion stress strain curve is 4. Material constants ,c γ are listed 
in Table II. These constants are determined by using the least 
square method. 

The predicted fatigue lives under proportional and non-
proportional loading conditions obtained by the simulation 
method are compared to the experimental life data in Fig. 5. 
The maximum fatigue life correlation factor is equal to 3.1. 
 

5. Discussion  

Figs. 2-5 show that the fatigue life predicted used in the 
model fatigue of the plastic strain energy produced results 
approximately similar to those of the plasticity models of the 
multi-surface and non-linear under proportional and non-
proportional loadings. For similar loading conditions, on this 
metal of maximum life factors in the multi-surfaces plasticity 

Table 1. Energy-based fatigue coefficients. 
 
           Value                             Value 
   Axial  Torsional 
 ' 3( / )fE MJ m   1139.32  ' 3( / )fW MJ m  2674.78 
 C   -0.765  sC   -0.7816 
 

  
Fig. 2. Life prediction using the Mroz plasticity model. 
 

  
Fig. 3. Life prediction using the Garud plasticity model. 

Table 2. Chaboche constants for each back stress. 
 
Number of 1
2 back stress 1 2 3 4 

Constant c 11235.5 13267.2 13961.8 1622.5 

Constant γ 425.9 250.1 250.1 0 
 

 
 
Fig. 4. Life prediction using the Armstrong-Frederick plasticity model.

 

 
 
Fig. 5. Life prediction using the Chaboche plasticity model. 
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models are under life factor of 3, while the values for the non-
linear plasticity models are over 3. In contrast, strain energies 
in the non-linear models have more desirable contributions. In 
the multi-surface models, however, they often collect around 
the line of the maximum life factor. Since the plastic strain is 
dependent on the hysteresis loop shape, various cases in the 
different loading paths have occurred. All of the prediction 
ranges are summarized in Table III under different loading 
paths for a 1% Cr-Mo-V steel. 

Overall, fatigue life in the strain energy model is better pre-
dicted using the multi-surface plasticity models compared to 
the other models in different loading conditions. Finally, the 
Garud model is selected as optimum plasticity model in the 
proportional and non-proportional loadings for the material 
(Fig. 3). 

Using this approach, the prediction ranges in the presented 
results are reasonable and analogous according to other me-
thods of plastic strain energy. Garud [12] verified his plastic 
work model to proportional and non-proportional out-of-phase 
test data generated for the given metal. For this material, life 
factor of 3 was predicted by his approach. 
 

6. Conclusions 

The cyclic plasticity models of multi-surface and non-linear 
hardening have been examined by an energy-based criterion 
under tension-torsion loading in different paths. For this pur-
pose, the fatigue life of a metal was predicted by the plastic 
strain energy approaches of the plasticity models of Garud, 
Mroz, Chaboche, and Armstrong-Frederick. A mean fatigue 
life factor of 3 has been obtained for the models, which is 
close to the results of other research. The Garud multi-surface 
model is selected as the optimum plasticity model in the given 
loading condition. 
 

Nomenclature------------------------------------------------------------------------ 

ija   :  Tensor of yield surface center or back stress 
,c γ   :  Material constants from cyclic stress-strain 
, sC C   :  Axial and shear fatigue toughness exponents 

ijda  :  Increment of yield surface center 
ijds  :  Increment of stress tensor 
p
ijdε   :  Strain tensor of the plastic increment 
p
edε   :  Variations of accumulated plastic strain 

' ',f fE W  :  Axial and shear fatigue toughness 

pK   :  Plastic tangent modulus in multiaxial state 
ijn   :  Normal vector on the active yield surface 

AN  :  Fatigue life in a purely axial loading  

fN  :  Predicted fatigue life 
TN   :  Fatigue life in a purely torsional loading  

rR   :  Stress value at the end of the ith surface 
ijS   :  Instantaneous deviated stress tensor 
W∆   :  Plastic strain energy 

p
AW∆   :  Axial plastic strain energy 
p

TW∆   :  Shear plastic strain energy 

0yσ  :  Initial yield stress 
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